An Iterative Coordinate Descent Algorithm for High-Dimensional Nonconvex Penalized Quantile Regression
نویسندگان
چکیده
We propose and study a new iterative coordinate descent algorithm (QICD) for solving nonconvex penalized quantile regression in high dimension. By permitting different subsets of covariates to be relevant for modeling the response variable at different quantiles, nonconvex penalized quantile regression provides a flexible approach for modeling high-dimensional data with heterogeneity. Although its theory has been investigated recently, its computation remains highly challenging when p is large due to the nonsmoothness of the quantile loss function and the nonconvexity of the penalty function. Existing coordinate descent algorithms for penalized least-squares regression cannot be directly applied. We establish the convergence property of the proposed algorithm under some regularity conditions for a general class of nonconvex penalty functions including popular choices such as SCAD (smoothly clipped absolute deviation) and MCP (minimax concave penalty). Our Monte Carlo study confirms that QICD substantially improves the computational speed in the p n setting. We illustrate the application by analyzing a microarray dataset.
منابع مشابه
A Parallel Algorithm for Large-scale Nonconvex Penalized Quantile Regression
Penalized quantile regression (PQR) provides a useful tool for analyzing high-dimensional data with heterogeneity. However, its computation is challenging due to the nonsmoothness and (sometimes) the nonconvexity of the objective function. An iterative coordinate descent algorithm (QICD) was recently proposed to solve PQR with nonconvex penalty. The QICD significantly improves the computational...
متن کاملPenalized Bregman Divergence Estimation via Coordinate Descent
Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...
متن کاملStrong rules for nonconvex penalties and their implications for efficient algorithms in high-dimensional regression
We consider approaches for improving the efficiency of algorithms for fitting nonconvex penalized regression models such as SCAD and MCP in high dimensions. In particular, we develop rules for discarding variables during cyclic coordinate descent. This dimension reduction leads to a substantial improvement in the speed of these algorithms for high-dimensional problems. The rules we propose here...
متن کاملMajorization minimization by coordinate descent for concave penalized generalized linear models
Recent studies have demonstrated theoretical attractiveness of a class of concave penalties in variable selection, including the smoothly clipped absolute deviation and minimax concave penalties. The computation of the concave penalized solutions in high-dimensional models, however, is a difficult task. We propose a majorization minimization by coordinate descent (MMCD) algorithm for computing ...
متن کاملQuantile Regression for Analyzing Heterogeneity in Ultra-high Dimension.
Ultra-high dimensional data often display heterogeneity due to either heteroscedastic variance or other forms of non-location-scale covariate effects. To accommodate heterogeneity, we advocate a more general interpretation of sparsity which assumes that only a small number of covariates influence the conditional distribution of the response variable given all candidate covariates; however, the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014